Bee Brains Hold Temp Steady to Slow Cook Wasps

This version of Wbna46775634 - Breaking News | NBC News Clone was adapted by NBC News Clone to help readers digest key facts more efficiently.

The Japanese honeybee and the giant hornet are waging an epic war. The hornets, which can grow up to 1.6 inches (4 centimeters) long, attack the nests of the bees, and the honeybees will surround a hornet and "cook" it.

The Japanese honeybee and the giant hornet are waging an epic war. The hornets, which can grow up to 1.6 inches (4 centimeters) long, attack the nests of the bees, and the honeybees will surround a hornet and "cook" it.

The honeybees' stingers can't penetrate a hornet's thick outer skin, so the bees swarm around an attacker instead, forming a spherical bee ball, and use their vibrating flight muscles to create heat. The mass of bees will heat the area up to 116 degrees Fahrenheit (47 degrees Celsius), enough to kill the hornet.

Scientists discovered these bee balls in 2005 and have been studying them ever since. Now researchers have figured out the bee-brain mechanism that regulates the thermo-balling behavior in Japanese honeybees but not in their relatives, the European honeybees.

The researchers plucked honeybees from the hot defensive bee ball at different times to see what parts of the brain were active. They found that cells in brain centers involved in complex behaviors were more active when in the hot ball than when the bees were carrying out other activities.

"It might be that the neurons located in this area are also involved in processing thermal information in the worker honeybees," the researchers wrote in the paper, published March 14 in the journal PLoS ONE.

This brain activation was also seen when the bees were exposed to heat, supporting the idea the brain region is sending out directions to keep the bees producing steady heat that's hot enough to kill the hornets, but not themselves. This neural activity wasn't seen in European honeybees.

"Because there is only 3 to 5 C difference [5 to 9 degrees F] in the lethal temperature between the Japanese honeybee and the giant hornet, accurate monitoring and precise control of heat generation during forming a hot defensive bee ball seem critical for the Japanese honeybees," they wrote.

These activated areas "might be involved in thermal information processing, to appropriately regulate the duration of flight muscle vibration and control heat generation during forming the bee ball."

You can follow LiveScience staff writer Jennifer Welsh on Twitter @. Follow LiveScience for the latest in science news and discoveries on Twitterand on.

×
AdBlock Detected!
Please disable it to support our content.

Related Articles

Donald Trump Presidency Updates - Politics and Government | NBC News Clone | Inflation Rates 2025 Analysis - Business and Economy | NBC News Clone | Latest Vaccine Developments - Health and Medicine | NBC News Clone | Ukraine Russia Conflict Updates - World News | NBC News Clone | Openai Chatgpt News - Technology and Innovation | NBC News Clone | 2024 Paris Games Highlights - Sports and Recreation | NBC News Clone | Extreme Weather Events - Weather and Climate | NBC News Clone | Hollywood Updates - Entertainment and Celebrity | NBC News Clone | Government Transparency - Investigations and Analysis | NBC News Clone | Community Stories - Local News and Communities | NBC News Clone