Gamma Rays Fill Cosmic Bubbles in New NASA Photo

Catch up with NBC News Clone on today's hot topic: Wbna45479668 - Breaking News | NBC News Clone. Our editorial team reformatted this story for clarity and speed.

A new image from NASA's Fermi space telescope shows gamma rays — the highest-energy form of light — filling faraway bubbles of hot gas created by massive stars.

A new image from NASA's Fermi space telescope shows gamma rays — the highest-energy form of light — filling faraway bubbles of hot gas created by massive stars.

The bubbles are located about 4,500 light-years away, in a star-forming region of the constellation Cygnus (the Swan) that astronomers have dubbed Cygnus X. Cygnus X hosts hundreds of huge stars, whose powerful radiation has cleared out vast amounts of gas from the neighborhood.

The massive stars thus sit in bubbles filled with hot, sparse gas; these hollowed-out regions are surrounded by ridges of thicker, cooler gas where new stars are forming, researchers said.

The outflow from Cygnus X's gigantic stars also creates intense magnetic fields within the bubbles. And it is these magnetic fields that help spawn the gamma rays, by trapping and deflecting fast-moving particles called cosmic rays.

Cosmic rays are tiny, electrically charged particles that move at nearly the speed of light. They are primarily protons, and astronomers think most were probably accelerated to their incredible speeds by star explosions known as supernovas.

When cosmic rays collide with interstellar gas, they give off gamma rays. That appears to be what's happening in Cygnus X; the cosmic rays are being deflected by the bubbles' magnetic fields, then slamming into gas molecules, researchers said.

A supernova remnant may have spawned the cosmic rays found in Cygnus X's bubbles, but it's also possible that the particles were accelerated through repeated interaction with shockwaves produced within the cavities by stellar winds.

"Whether the particles further gain or lose energy inside this cocoon needs to be investigated, but its existence shows that cosmic-ray history is much more eventful than a random walk away from their sources," said Luigi Tibaldo, a physicist at Padova University and the Italian National Institute of Nuclear Physics, a co-author of a recent study investigating the bubbles.

Follow SPACE.com for the latest in space science and exploration news on Twitterand on.

×
AdBlock Detected!
Please disable it to support our content.

Related Articles

Donald Trump Presidency Updates - Politics and Government | NBC News Clone | Inflation Rates 2025 Analysis - Business and Economy | NBC News Clone | Latest Vaccine Developments - Health and Medicine | NBC News Clone | Ukraine Russia Conflict Updates - World News | NBC News Clone | Openai Chatgpt News - Technology and Innovation | NBC News Clone | 2024 Paris Games Highlights - Sports and Recreation | NBC News Clone | Extreme Weather Events - Weather and Climate | NBC News Clone | Hollywood Updates - Entertainment and Celebrity | NBC News Clone | Government Transparency - Investigations and Analysis | NBC News Clone | Community Stories - Local News and Communities | NBC News Clone