Robot wing to reveal hummingbird hover tricks

This version of Wbna40315201 - Breaking News | NBC News Clone was adapted by NBC News Clone to help readers digest key facts more efficiently.

B.J. Balakumar's robotic hummingbird wing isn't as pretty as the real thing. It lacks jewel-like colors and the iridescent glint of hummingbird feathers. But what the unadorned metal wing does have is the ability to help researchers understand how the tiny fliers manage to dart, hover and dive even in gusty winds.
Image: Robotic hummingbird wings
By exposing the robotic hummingbird wing to winds in a controlled laboratory environment, researchers hope to identify the mathematical algorithms that will allow them to transfer the feat to flying robots. B.J. Balakumar / Los Alamos National Laboratory

B.J. Balakumar's robotic hummingbird wing isn't as pretty as the real thing. It lacks jewel-like colors and the iridescent glint of hummingbird feathers. But what the unadorned metal wing does have is the ability to help researchers understand how the tiny fliers manage to dart, hover and dive even in gusty winds.

The work is still in the preliminary stages, Balakumar, a researcher in the Extreme Fluids Lab at Los Alamos National Laboratory, told LiveScience. However, the researchers hope that the findings will eventually be used in robotics.

The smallest hummingbirds weigh barely more than a penny, and the largest weigh in at just 0.7 ounces. Despite their mini stature, hummingbirds are among the world's largest hovering animals.

Researchers have long known that hummingbirds don't fly like other birds. Instead of flapping their wings up and down, hummingbirds oscillate their wings in a figure-eight pattern. The oscillation produces lift on both the downstroke and the upstroke. When hovering, hummingbirds generate extra lift by creating a vortex of air on the leading edge of their wings.

These wing vortices are very unstable, meaning they should vanish at the teensiest nudge, Balakumar said. But the hummingbirds have a clever way around that problem.

"Their wings create the vortex with a high angle of attack on the downstroke," Balakumar said in a statement. "Then they flip their wings around on the upstroke, so as they shed one vortex, they create another on the other side of the wing, thereby managing to maintain high lift forces."

But a gust of wind could upset this delicate balance. Balakumar and his team built their robotic hummingbird wing to find out how hummingbirds compensate for breezy conditions. By exposing the wing to winds in a controlled laboratory environment, Balakumar and his team hope to identify the mathematical algorithms that will allow them to transfer the feat to flying robots. Such stable hovering machines would be useful for surveillance and other applications, the researchers report.

The researchers describe their robotic wing device Monday at the American Physical Society Division of Fluid Dynamics meeting in Long Beach, Calif.

×
AdBlock Detected!
Please disable it to support our content.

Related Articles

Donald Trump Presidency Updates - Politics and Government | NBC News Clone | Inflation Rates 2025 Analysis - Business and Economy | NBC News Clone | Latest Vaccine Developments - Health and Medicine | NBC News Clone | Ukraine Russia Conflict Updates - World News | NBC News Clone | Openai Chatgpt News - Technology and Innovation | NBC News Clone | 2024 Paris Games Highlights - Sports and Recreation | NBC News Clone | Extreme Weather Events - Weather and Climate | NBC News Clone | Hollywood Updates - Entertainment and Celebrity | NBC News Clone | Government Transparency - Investigations and Analysis | NBC News Clone | Community Stories - Local News and Communities | NBC News Clone